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Objectives: This paper introduces a new graph-based method for segmenting breast tumors in US images.
Background and motivation: Segmentation for breast tumors in ultrasound (US) images is crucial for com-
puter-aided diagnosis system, but it has always been a difficult task due to the defects inherent in the US
images, such as speckles and low contrast.
Methods: The proposed segmentation algorithm constructed a graph using improved neighborhood mod-
els. In addition, taking advantages of local statistics, a new pair-wise region comparison predicate that
was insensitive to noises was proposed to determine the mergence of any two of adjacent subregions.
Results and conclusion: Experimental results have shown that the proposed method could improve the
segmentation accuracy by 1.5–5.6% in comparison with three often used segmentation methods, and
should be capable of segmenting breast tumors in US images.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Breast cancer is one of the leading causes of death in women.
Medical ultrasound (US) imaging has been regarded as one of the
gold standards for breast tumor imaging, since it is not only
inexpensive and fast, but also noninvasive and accurate [1]. How-
ever, the manual US image diagnosis is subject to the radiologist’s
experience and skills. It has been recognized that computer-aided
diagnosis (CAD) can increase the efficiency and reduce errors of
breast cancer screening by using the computer as a second reader.
Segmentation is the most essential and important step for further
tumor analysis in CAD system [2].

In the past decade, a large number of segmentation methods
including thresholding, neural network (NN), deformable shape
model, etc. have been proposed in the literature [3,4]. However,
due to the speckles and low contrast which are inherent in the US
images, it is often difficult to segment the US images and the detec-
tion of boundaries or contours has become an important method to
extract the tumor areas. Consequently, the active contour model
(ACM) also called Snake [5] has become a popular segmentation
method for US images and has been extensively used for breast
[6–8], cardiopathy [9,10], carotid artery [11,12], prostate [13,14],
thyroid [15,16], etc. For breast tumors in US images, Huang and
Chen [6] automatically found the initial contour by the watershed
transform for ACM to determine the contours of the tumor. Chang
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et al. [7] applied an anisotropic filter, a stick procedure and an auto-
matic threshold method to find the initial contours for the Gradient
Vector Flow (GVF) Snake, and finally extended this method to 3-D
case. Jumaat et al. [8], however, made a comparison between Bal-
loon Snake and GVF Snake in segmenting masses from breast US
images and found that the average percentage area difference in
the Balloon Snake was much lower than that in the GVF Snake.

The ACM methods deform in an iterative manner to get as close
as possible to the contours of breast tumors. They still are sensitive
to noises and heavily rely on the initial definition of object con-
tours [6]. Because of the blurry boundaries inherent in the US
images, it is difficult to find out an automatic scheme for defining
the initial contours. A poorly defined initial contour apparently re-
sults in inaccurate segmentation of regions of interest (ROI). Cur-
rently used ACM methods require the initial contours to be
defined by either manual delineations or some complexly auto
-initialized methods. For real-time applications or sequentially
processing a large number of images, the contour initialization
should be computationally efficient.

In contrast to the ACM methods, clustering, an unsupervised
learning technique is an alternative for image segmentation which
requires less user participation. Clustering is an iterative method to
find clustering centers which minimize the squared distances
between sample points and the clustering centers [17]. The image
points with varying intensities can be regarded as samples and
hence can be grouped into different clusters, which denote non-
overlapped regions in the image. Accordingly, the segmentation
methods based on clustering techniques are regarded as region
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based methods. K-means clustering and fuzzy C means (FCM)
clustering are the two basic and popular clustering methods [17].
The clustering based segmentation can be automatically per-
formed without the need to set the initial contour. As a result,
the K-means and FCM have been applied for segmentation of US
images [18–20].

Region based segmentation methods based graph theory have
also been proposed [21,22]. It is called graph-based (GB) segmen-
tation method. Taking into account global image properties as well
as local spatial relationships, a GB method results in a regional map
that can be used for further processing, e.g. region merging or
labeling. In the GB methods, an undirected graph G = (V,E) where
each vertex vi 2 V corresponds to a pixel and an edge (vi,vj) 2 E con-
nects vi with vj is constructed. The edge weights in the graph are
often assigned with the difference of intensity, texture or other fea-
tures between vertices. Consequently, the image segmentation can
be converted into the graph segmentation in which each subgraph
corresponds to a subregion.

One typical GB segmentation method called efficient graph-
based (EGB) algorithm was successfully applied to various images
[23]. It consisted of two steps, i.e. the graph construction for map-
ping an image to a graph, and the mergence of vertices in the graph.
Intrinsically, the EGB segmentation method acted as a clustering
method and expanded (or merged) regions according to the local
spatial, in addition to the global information. Therefore, the regions
with similar intensity levels but different locations could be well di-
vided into different segments. Due to their simple structures and
reliable theoretical basis, the GB representations and techniques
have been refined and extensively applied to many segmentation
problems, including medical image segmentations of laparoscopic
images [24] and mammograms [25]. To the best of our knowledge,
however, little attention has been paid to applying them to US im-
age segmentation due to their significant sensitivity to noises.

Accordingly, we proposed to apply a new GB method to breast
tumor segmentation in US images. Due to the complex image arti-
facts existing in US images, a preprocessing procedure for reducing
the speckles and preserving the boundaries was performed before
the segmentation. To make the segmentation more robust to
noises, a new pair-wise region comparison predicate for our GB
method was proposed to segment breast tumor regions. In the
new predicate, we took into account the local statistics and the
measures of signal-to-noise ratio (SNR) of US images. We designed
a new metrics for evaluating the segmentation performance of dif-
ference techniques, and conducted experiments to make compari-
sons among the FCM, K-means, EGB and RGB methods. The new GB
method was named as robust graph-based (RGB) algorithm be-
cause it was relatively insensitive to noises, could be applied with
relatively smaller ranges of the parameters, and could improve the
segmentation performance in comparison with the EGB method. In
addition, we used the FCM and the RGB as the initial contour esti-
mation methods and combined each of them with an ACM (Snake)
method together to assess the performance of each algorithm.

The remainder of this paper is organized as follows. The next sec-
tion describes the new GB method. Then, the experimental results
on US images of breast tumor are presented. The final section gives
a discussion, draws the conclusions and introduces our future work.
Fig. 1. Four different graph templates where the lines denote the edges, and the
intersection point and the endpoints of edges denote the pixels. (a) 8-Connected
neighborhood, (b) 6-connected neighborhood (left), (c) 6-connected neighborhood
(right), and (d) 4-connected neighborhood.
2. Methods

In a GB segmentation method [23], the image was firstly repre-
sented by a graph in which each vertex denoted a pixel. An edge
existed between each pair of neighboring pixels. The edge weights
varied according to some criterion, e.g. intensity difference. The
vertices were regarded as the smallest subgraphs at the beginning
of the segmentation. A larger subgraph could be generated by
merging smaller subgraphs. By repeating the merging procedure,
the image could be segmented into several larger homogeneous
subregions which were represented by corresponding subgraphs.

In this study, a novel GB method making use of the statistical
information of each subgraph (subregion) was proposed. The
utilization of the statistics of each subregion could significantly
improve the robustness of the proposed method to noises compar-
ing to the EGB method [23]. Hence, it was named as robust
graph-based (RGB) segmentation method in this paper.

2.1. Speckle reduction

It is well known that US image often contains plenty of artifacts
and noises due to the complex imaging environment and imaging
principle, such as speckles and low contrast. They greatly degrade
the performance of conventional segmentation methods. To im-
prove the robustness of the RGB method to noises, a preprocessing
procedure for speckle reduction was required. A nonlinear aniso-
tropic diffusion (NAD) model which has been proved to be an effi-
cient method for the speckle reduction was used. In this paper, the
parameters in the NAD model were set as suggested in [26] (i.e. 10
iterations with a time step Dt = 2 per iteration, a� = 1, s = 20, and
b� = 0.2).

2.2. Graph construction

In construction of the graph, each vertex vi 2 V corresponded to
a pixel in the image, and an edge (vi,vj) 2 E connected vi with vj

which were neighbors. For monochrome images, the edge weight
wij was the intensity difference between vi and vj, i.e.

wij ¼ jIðv iÞ � Iðv jÞj ð1Þ

where I(vi) was the intensity of vi.
In a conventional GB segmentation method, the graph was con-

structed in an 8-connected neighborhood, i.e. a pixel had eight
edges connecting to its neighbors as illustrated in Fig. 1a. One
might be wondering whether or not it was necessary to consider
all edges connecting any of two neighboring vertices. To answer
this question, we took into account three types of graph structure
in which a pixel had less edges connecting to its neighbors, i.e. the
6-connected neighborhoods and the 4-connected neighborhoods
as illustrated in Fig. 1b–d, respectively. The segmentation perfor-
mance for the new types of graph was evaluated and an appropri-
ate type of neighborhood was suggested for segmentation of US
images. As the number of edges was reduced, the structure of the
graph was simplified and the amount of computation was de-
creased, hence the algorithmic efficiency could be improved.

2.3. Pairwise region comparison predicate

Having constructed a graph in which each subgraph repre-
sented a single pixel, we needed to merge these subgraphs with
similar intensity levels and form larger subgraphs (i.e. non-over-
lapped subregions). In this procedure, whether the boundaries
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between two connected smaller subgraphs (subregions) should be
eliminated was determined according to a pre-defined predicate
that measured the evidence for a boundary between the two
subregions.

In the RGB method, we designed a new predicate to determine
whether or not two neighboring subregions (i.e. connected sub-
graphs) should be merged. Given a graph G = (V,E), the resulting
predicate D(C1,C2) compared the inter-subgraph differences to
the within subgraph differences, as expressed by

DðC1;C2Þ ¼
TRUE if Dif ðC1;C2Þ 6 MIntðC1;C2Þ
FALSE otherwise

�
ð2Þ

where Dif(C1,C2) was the difference between two subgraphs
C1, C2 # V, and MInt(C1,C2) the minimum internal difference with
each subgraph, C1, C2 # V. It was reasonable that two subgraphs
should be merged if their difference in between was smaller than
their minimum internal difference. Consequently, how to define
Dif(C1,C2) and MInt(C1,C2) was the key issue for the segmentation
performance.

By taking into account local statistical information, the defini-
tion for Dif(C1,C2) in the RGB method was expressed as

Dif ðC1;C2Þ ¼ jlðC1Þ � lðC2Þj ð3Þ

where l(C) denoted the averaged intensity of subregion C. If there
was no edge connecting C1 and C2 (i.e. C1 and C2 were not spatially
adjacent), Dif(C1,C2) =1. It was clear that the mean values for the
pixels would be good at reducing the effect of noises.

The definition for MInt(C1,C2) was formulated by

MIntðC1;C2Þ ¼ minðIntðC1Þ þ sðC1Þ; IntðC2Þ þ sðC2ÞÞ ð4Þ

where s(C), C # V, was a threshold function, and Int(C), C # V, was
the internal difference denoted by the standard deviation of C, i.e.

IntðCÞ ¼ rðCÞ ð5Þ

where r(C) was the standard deviation of the pixel intensities in
subregion C. The Int(C) represented the extent of deviation of C.

The threshold function s was defined by

sðCÞ ¼ k
jCj � 1þ 1

a � b

� �
; b ¼ lðCÞ

rðCÞ ð6Þ

where a and k took positive values, the l(C) and r(C) were the
intensity mean and deviation of the subregion C, and |C| was the
area of C. We used l(C)/r(C) to adjust the influence of |C|. l(C)/
r(C) could be a measure of the smoothness of the subregion C. Note
that l(C)/r(C) has been usually regarded as a measure of the SNR
for a homogeneous region in a US image full of speckles [27]. The
lower the l(C)/r(C) was, the higher the s(C) was. Higher s(C) might
lead to higher MInt(C1,C2), weakening the evidence for the bound-
ary between C1 and C2. It is reasonable that two connected inhomo-
geneous subregions which contain similar textures tend to be
merged, resulting in the segmentations being not too fine. On the
contrary, higher l(C)/r(C) corresponding to a more homogeneous
region would strengthen its boundary, decrease the probability of
region mergence, and hence make the segmentations not too
coarse. The updated threshold function s(C) with carefully selected
a and k could overcome the problem of over-segmentation to some
extent, hence being more robust to noises.

It could be observed that s(C) in (6) tended to merge two con-
nected subgraphs when their areas were small. This property
would lead to the mergence of smaller subregions and overcome
the problem of over-segmentation. It was also worth noting that
the selections of a and k in our predicate would significantly
influence the segmentation results and their values should be
empirically assigned for optimal performance according to the
observations of radiologists.

2.4. Region mergence

Based on the proposed pairwise region comparison predicate,
any two subregions with similar averaged intensities and a spatial
connection could be merged. At the beginning, each vertex in the
constructed graph was treated as an isolated subgraph, and each
edge was initially treated as being invalid. Then the edges were
sorted according to their weights by nondecreasing ordering and
traversed. If two vertices connected by an edge being traversed be-
longed to two different subgraphs and their boundary could be
eliminated according to the proposed pair-wise region comparison
predicate, the edge was set to be valid and the two subgraphs were
merged to form a larger subgraph which was connecting with
other subgraphs through invalid edges.

Having traversed all edges, a ‘‘forest’’ including a number of
‘‘trees’’ each of which was a minimum spanning tree (MST) could
be obtained. A spanning tree of a connected graph G is a tree con-
taining all vertices of G. If the weight of a tree is defined as the sum
of the weights of its constituent edges, a MST of G is a spanning
tree with the minimum sum of the weights among all spanning
trees of G [28]. To obtain a MST, Kruskal [29] proposed to choose
the shortest edge which was not yet chosen and did not form
any loops with those edges already chosen until no edge could
be chosen. If each MST corresponded to a subregion of the image,
the pixels locating in the subregion were significantly similar in
the feature space whereas those pixels from a different subregion
would be significantly different. We used Kruskal’s method to ob-
tain MSTs in this study. It was worth noting that the original image
was finally divided into a number of homogeneous subregions,
each of which could be expressed as a MST.

2.5. The proposed RGB segmentation algorithm

The detailed algorithmic procedures for segmentation of breast
tumors in US images were summarized as follows.

1. Performed the speckle reduction and boundary preservation in
a US image via the NAD model.

2. Constructed the graph G = (V,E) for the image and set all edges
to be invalid.

3. Sorted the edges E into p = (o1, . . .,om) by nondecreasing edge
weight. Let q = 1.

4. Picked the q-th edge in the sorted edges. If the q-th edge con-
nected different subgraphs and the boundary between the
two subgraphs should be eliminated according to the proposed
pairwise region comparison predicate shown in (2)–(6), the two
subgraphs were merged into a larger subgraph and their edge
was set to be valid. The l and r of the new subgraph were
updated.

5. Let q = q + 1. Repeated step 4 until all edges had been traversed.

When all edges had been traversed, each tree in the obtained
forest was a MST corresponding to a segmented subregion in the
image. Fig. 2 shows the flow chart of the proposed method.

2.6. Experimental methods

This work was approved by Human Subject Ethics Committee of
South China University of Technology. Our method was developed
using VC++ and evaluated using 20 US images of breast tumors, in
which half were benign and the remaining half were malignant.
The US images with the subjects’ consent forms were provided
by the Cancer Center of Sun Yat-sen University and taken from a



Fig. 2. Flow chart for the robust graph-based segmentation algorithm.

Table 1
The five sets of parameters for the Snake.

No. a b c

1 1.0 2.0 2.0
2 1.0 1.0 1.0
3 2.0 1.0 1.0
4 1.0 2.0 1.0
5 1.0 1.0 2.0

Fig. 3. Illustration of the computation for the averaged radial error. The solid line
denotes the ‘‘true’’ boundary of an object and dashed line denotes the boundary
produced by a segmentation method. From the center of the region marked by the
‘‘true’’ boundary, a number of rays are emitting and crossing the two boundaries.
The percentage of the absolute difference between the two crossing points on each
of the rays to the distance from Co to the crossing point at the ‘‘true’’ boundary are
summed and then averaged as a metric for evaluating the segmentation accuracy.
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HDI 5000 SonoCT System (Philips Medical Systems) with a L12-5
50 mm Broadband Linear Array at the imaging frequency of
7.1 MHz. The image size was 400 � 300. The ‘‘true’’ tumor regions
of the US images were manually defined by three radiologists and
averaged.

In order to evaluate the performance of the RGB, three experi-
ments were performed as follows.

1. The graphs were constructed using the four different types of
neighborhood as illustrated in Fig. 1, and the segmentation
results were compared using five benign and five malignant
images so as to find an appropriate type of neighborhood in
terms of both segmentation accuracy and computational
efficiency.

2. In order to validate the segmentation performance of the RGB,
the images were also segmented using the K-means [17], FCM
[17] and the EGB methods [23], respectively, which have been
recognized as efficient region based methods for image seg-
mentation. For the K-means and FCM methods, both K and c
(i.e. the numbers of classes), were carefully set to make the tar-
get regions isolated from the backgrounds. For the EGB method,
the parameter k was set to be 150 as suggested in [23] and the
‘‘optimal’’ values which were manually attempted and could
mostly isolate the tumor regions without significant over-seg-
mentations according to the judgments of the three radiolo-
gists, respectively. In our method, the parameters k and a
were empirically set to 2000 and 0.01–0.05, respectively.

3. To further verify the performance of the RGB, the contours
extracted from FCM and RGB results were treated as the initial
contours for Snake, because the region based methods have
often been used to initialize a local segmentation for active con-
tours [22]. It is noted that the approximation of initial contours
would significantly reduce the iteration runs and computational
time of Snake [5]. Therefore, comparing the iteration time and
segmentation accuracy of the two contour initialization meth-
ods could be another way to verify the performance of the
region based segmentation methods. Given the discrete points
along the contour, V = (v0, v1, . . ., vn�), the Snake algorithm used
in this paper minimized a measure of energy as the following
formulas [30].
ESnakeðVÞ ¼
Xn�1

i¼0

Eintðv iÞ þ cEextðv iÞ ð7Þ

where Eint(vi) and Eext(vi) were the internal and external energies,
respectively. Eint(vi) was defined by

Eintðv iÞ ¼ ajv 0ðiÞj2 þ bjv 00ðiÞj2

jv 0ðiÞj2 � ð�d� jv i � v i�1jÞ2 max
vm ;wm�12V

�
ð�d� jvm � vm�1jÞ2

jv 00ðiÞj2 � jv i�1 � 2v i þ v iþ1j2 max
vm ;vm�1 ;vmþ12V

�
ðvm�1 � 2vm þ vmþ1Þ2

ð8Þ

where v0(i) and v00(i) denoted the first and second derivatives of vi,
a, b and c were the weights balancing the internal and external
energies, d was the averaged distance between the contour points
and the center of the tumor area. Eext(vi) was defined by

Eextðv iÞ ¼ �jrIðv iÞj=ðmax�minÞ
max ¼max

vm2V
rIðvmÞ

min ¼min
vm2V
rIðvmÞ

ð9Þ

where I was the image and rI(vi) was the gradient of the image
which attracted V to the true contour of the tumor area. The total
energy of the contour V should be minimized iteratively until it
was not significantly changed. That was, at each iteration, the loca-
tion of vi should be replaced to minimize the ESnake(V). In order to
eliminate the uncertain factors caused by the Snake, five groups
of the parameters for a, b, and c, were tested in this study as pre-
sented in Table 1.

To assess quantitatively the segmentation accuracy, a metrics
called averaged radial error (ARE) was designed as shown in
Fig. 3. The ARE was expressed as

AREðnÞ ¼ 1
n

Xn�1

i¼0

jCsðiÞ � CrðiÞj
jCrðiÞ � Coj � 100% ð10Þ
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where n was the number of radial rays emitting from the center (Co)
of the ‘‘true’’ tumor region, Cs(i) the location of the pixel at which
the boundary of the segmented breast tumor region was crossing
the ith ray, and Cr(i) the location of the pixel at which the boundary
of the ‘‘true’’ tumor region was crossing the ith ray. The n rays were
evenly emitted from Co. In this study, n was set to be 36, i.e. the an-
gle h between any of two adjacent rays was 10�.

Moreover, the segmentation performance was also evaluated
using the method reported by [31]. In that work, three measures
including False Negative volume fraction (FNVF), False Positive vol-
ume fraction (FPVF), and True Positive volume fraction (TPVF) were
defined to evaluate the segmentation accuracy. The FNVF denoted
the fraction of tissue defined in the ‘‘true’’ tumor region that was
missed by a segmentation method. The FPVF denoted the amount
of tissue falsely identified by a segmentation method as a fraction
of the total amount of tissue in the ‘‘true’’ tumor region. The TPVF
indicated the total fraction of tissue in the ‘‘true’’ tumor region
with which the segmented region overlapped. It is obvious that a
larger TPVF, smaller FNVF and smaller FPVF would lead to im-
proved segmentation performance.
Fig. 4. Segmentation results for the first benign breast tumor. (a) Source image; (b) filter
k = 150; (f) the EGB result, k = 1200; (g) the RGB result using the 4-connected neighborhoo
k = 2000, a = 0.04; (i) the RGB result using the 6-connected neighborhood (left), k = 2000
(k) the FCM + Snake result; and (l) the RGB + Snake result.
3. Experimental results

3.1. Qualitative analysis

For brevity, we present the segmentation results for only four
typical breast tumors in this paper. Figs. 4a, 5a, 6a and 7a show
two benign tumors and two malignant tumors, respectively. After
applying the NAD model to the images, the processed images in
which most of speckles had been removed can be seen in Figs. 4b,
5b, 6b, and 7b. Based on the preprocessed images, the segmentation
results using the K-means are illustrated in Figs. 4c, 5c, 6c and 7c,
those using the FCM in Figs. 4d, 5d, 6d, and 7d, those using the
EGB (k = 150) in Figs. 4e, 5e, 6e and 7e, those using the EGB with
the appropriate values of k in Figs. 4f, 5f, 6f and 7f, those using
the RGB with the 4-connected neighborhood in Figs. 4g, 5g, 6g
and 7g, those using the RGB with the 6-connected neighborhood
(right) in Figs. 4h, 5h, 6h and 7h, those using the RGB with the 6-
connected neighborhood (left) in Figs. 4i, 5i, 6i and 7i, and those
using the RGB with the 8-connected neighborhood in Figs. 4j, 5j,
6j and 7j.
ed image; (c) the K-means result, K = 3; (d) the FCM result, C = 3; (e) the EGB result,
d, k = 2000, a = 0.04; (h) the RGB result using the 6-connected neighborhood (right),

, a = 0.05; (j) the RGB result using the 8-connected neighborhood, k = 2000, a = 0.02;



Fig. 5. Segmentation results for the second benign breast tumor. (a) Source image; (b) filtered image; (c) the K-means result, K = 3; (d) the FCM result, C = 3; (e) the EGB result,
k = 150; (f) the EGB result, k = 3000; (g) the RGB result using the 4-connected neighborhood, k = 2000, a = 0.02; (h) the RGB result using the 6-connected neighborhood (right),
k = 2000, a = 0.02; (i) the RGB result using the 6-connected neighborhood (left), k = 2000, a = 0.02; (j) the RGB result using the 8-connected neighborhood, k = 2000, a = 0.02;
(k) the FCM + Snake result; and (l) the RGB + Snake result.
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As shown in Figs. 4c, 5c, 6c, 7c4d, 5d, 6d, and 7d, the segmenta-
tion results of K-means and FCM were insensitive to noises when K
and c were relatively small. It can be explained that the smaller
cluster number would lead to a so large intensity range for each
cluster that the noises with a small variety of intensities would
have trivial influence on the clustering results. As shown in Figs.
4e, 5e, 6e and 7e, it is obvious that the EGB method with the
k = 150 produced the worst segmentation results, where severe
over-segmentation can be observed, indicating that the EGB was
very sensitive to noises. Even after the k could be optimally set
so that the breast tumors were better delineated as shown in Figs.
4f, 5f, 6f and 7f, the EGB segmentation results were still sensitive to
noises. Worse still, optimized values of k were significantly differ-
ent (1000–5000) for different images to achieve the most accept-
able segmented tumors. In some cases, the tumor regions had to
be over-segmented so as to be totally separated from the
background.

As shown in Figs. 4–7g–j, the segmentation results were robust
to noises and much similar for the RGB using the four different
types of neighborhood as illustrated in Fig. 1. The parameters were
invariable for different images (i.e. k was normally set to be 2000,
a, 0.01–0.05). Visually, the 4-connected neighborhood has pro-
vided sufficient neighboring information to generate the MSTs
and obtained neither over- nor under-segmented tumor.

3.2. Quantitative analysis

In experiment 1, an appropriate neighborhood for the RGB
could be determined by comparing the computation time and seg-
mentation accuracy of the four types of neighborhood. Theoreti-
cally, the time for graph construction and edge mergence is in
directly proportional to the number of edges. Given an image with
a size of w � h, the number of edges n is

n ¼ 2wh� ðwþ hÞ ð11Þ

for 4-connected neighborhood,

n ¼ 3wh� 2ðwþ hÞ þ 1 ð12Þ

for 6-connected neighborhood, and

n ¼ 4wh� 3ðwþ hÞ þ 2 ð13Þ

for 8-connected neighborhood.



Fig. 6. Segmentation results for the first malignant breast tumor. (a) Source image; (b) filtered image; (c) the K-means result, K = 3; (d) the FCM result, C = 3; (e) the EGB
result, k = 150; (f) the EGB result, k = 4000; (g) the RGB result using the 4-connected neighborhood, k = 2000, a = 0.02; (h) the RGB result using the 6-connected neighborhood
(right), k = 2000, a = 0.02; (i) the RGB result using the 6-connected neighborhood (left), k = 2000, a = 0.02; (j) the RGB result using the 8-connected neighborhood, k = 2000,
a = 0.02; (k) the FCM + Snake result; and (l) the RGB + Snake result.
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In the procedure of generating MSTs, each edge should be tra-
versed, hence the time complexity is positively proportional to n.
Table 2 illustrates the averaged running time of the RGB segmen-
tation for images of benign and malignant tumors with an image
size of 400 � 300 using the four types of neighborhood. The RGB
using the 4-connected neighborhood took about 340 ms, that using
the 6-connected neighborhoods about 400 ms, and that using the
8-connected neighborhood about 455 ms.

Table 3 shows the segmentation accuracy of the RGB using the
four types of neighborhood. For both benign tumors and malignant
tumors, the 8-connected neighborhood outperformed the other
types of neighborhood in the ARE measures. Interestingly,
the 8-connected neighborhood, however, did not outperform the
others in the measures of TPVF, FPVF, and FNVF. In general,
the 4-connected neighborhood performed the worst result, and
the 8-connected neighborhood performed slightly better than the
6-connected neighborhoods. Taking into account the computation
time presented in Table 2, the 6-connected neighborhood provided
an acceptable balance between the accuracy and the computa-
tional efficiency. As a result, we chose to use the 6-connected right
neighborhood for the RGB in the following experiments.
In experiment 2, the images were segmented by the K-means,
FCM, EGB ant RGB methods. Table 4 gives the AREs computed from
the segmentation results of the 20 US images. It can be clearly ob-
served that the RGB outperformed the others in that its AREs for
both benign and malignant cases were less than 10%, while the
AREs of the other three methods were larger than 10%. Moreover,
the RGB achieved the lowest standard deviation of ARE which
was less than 2.5% for the RGB and more than 2.5% for the other
three methods, indicating its good performance in obtaining stable
segmentation results. The EGB which was the most sensitive to
noises generated the largest ARE results (12.6% for benign cases
and 14.0% for malignant cases). In summary, the RGB, which was
much more robust to noises in comparison with the EGB, could
achieve the most accurate tumor regions for both of benign and
malignant breast tumor images. The improvement of segmentation
accuracy measured using the ARE was 1.5–5.6% as shown in
Table 4.

In experiment 3, the contours extracted from the FCM and RGB
results were treated as the initial contours for the Snake in a hybrid
segmentation method. Since over-segmentations might occur
when using both the RGB and the FCM methods, an initial tumor



Fig. 7. Segmentation results for the second malignant breast tumor. (a) Source image; (b) filtered image; (c) the K-means result, K = 3; (d) the FCM result, C = 3; (e) the EGB
result, k = 150; (f) the EGB result, k = 5000; (g) the RGB result using the 4-connected neighborhood, k = 2000, a = 0.02; (h) the RGB result using the 6-connected neighborhood
(right), k = 2000, a = 0.02; (i) the RGB result using the 6-connected neighborhood (left), k = 2000, a = 0.02; (j) the RGB result using the 8-connected neighborhood, k = 2000,
a = 0.02; (k) the FCM + Snake result; and (l) the RGB + Snake result.

Table 2
The computation time of the RGB using different neighborhoods. The best values are displayed in bold-face type.

Tumor type Neighborhood Run time (ms) Tumor type Neighborhood Run time (ms)

Benign 4 340.6 ± 22.1 Malignant 4 340.7 ± 13.6
6 Right 396.9 ± 21.2 6 Right 390.7 ± 15.6
6 Left 404.7 ± 22.5 6 Left 395.3 ± 15.7
8 456.3 ± 28.5 8 453.4 ± 18.6
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contour which might consist of one or more segmented subregions
were determined by the three radiologists. Figs. 4k, 5k, 6k and 7k
are the segmentation results of FCM + Snake, and Figs. 4l, 5l, 6l
and 7l are the segmentation results of RGB + Snake. The initial con-
tours extracted from the FCM or the RGB are in green1 and the final
contours of the Snake are in red.

Tables 5 and 6 show the segmentation performance of the FCM,
RGB and hybrid methods applied to the benign and malignant
breast tumors, respectively. For the metrics of the ARE, TPVF, and
1 For interpretation of colors in Figs. 4–7, the reader is referred to the web version
of this article.
FNVF, it can be clearly seen that the RGB + Snake outperformed the
FCM + Snake. For the FPVF, the RGB + Snake had similar perfor-
mance to the FCM + Snake when applied to the benign tumors,
and the latter slightly outperformed the former when applied to
the malignant tumors. In addition, the iteration time of the
RGB + Snake was on average reduced by a factor of 2.4 comparing
with the FCM + Snake. It is worth noting that the Snake could fur-
ther push the initial contour to the ‘‘true’’ contour as the measures
of ARE were approximately improved in both hybrid schemes, indi-
cating that the hybrid scheme should be more practical.

In summary, the RGB provided more accurate segmentations of
breast tumors in US images, and furthermore could be used as an



Table 3
The segmentation performance (in percentage) of the RGB using different neighborhoods. The best values are displayed in bold-face type.

Measure ARE (Mean ± SD) TPVF (Mean ± SD) FPVF (Mean ± SD) FNVF (Mean ± SD)

Benign
4 Neighborhood 10.5 ± 1.9 84.6 ± 3.9 1.7 ± 1.9 15.4 ± 4.0
6 Neighborhood (right) 9.6 ± 1.4 87.4 ± 2.5 1.6 ± 1.4 13.8 ± 2.5
6 Neighborhood (left) 9.6 ± 1.7 86.2 ± 3.1 3.5 ± 2.9 12.6 ± 3.1
8 Neighborhood 9.2 ± 1.6 87.0 ± 3.4 2.5 ± 2.1 13.1 ± 3.4

Malignant
4 Neighborhood 9.4 ± 3.9 87.1 ± 7.7 4.3 ± 5.5 12.9 ± 7.7
6 Neighborhood (right) 8.5 ± 2.3 87.6 ± 4.8 3.3 ± 2.8 12.3 ± 4.9
6 Neighborhood (left) 10.0 ± 2.4 87.5 ± 4.5 4.3 ± 5.2 12.4 ± 4.5
8 Neighborhood 8.1 ± 1.9 87.3 ± 3.5 1.8 ± 1.8 12.7 ± 3.5

Table 4
The ARE (Mean ± SD, in percentage) for the four segmentation methods. The best
values are displayed in bold-face type.

Methods K-Means FCM EGB RGB

Benign 11.0 ± 3.4 12.5 ± 3.5 12.6 ± 2.9 9.5 ± 1.4
Malignant 14.1 ± 10.0 10.4 ± 3.1 14.0 ± 6.2 8.5 ± 2.3
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initial contour estimation method for the Snake. The hybrid seg-
mentation scheme combining the RGB and the Snake could more
efficiently improve the segmentation performance for the breast
US images.
4. Discussions and conclusions

This paper introduces a robust graph-based method (called RGB)
for breast tumor segmentation in US images. The RGB which makes
use of the regional statistics for determination of whether two con-
nected subregions could be merged is less sensitive to noises in
comparison with EGB. Using the NAD model as a preprocessing
Table 5
The segmentation performance (in percentage) of the hybrid method for benign breast US

Parameters of the Snake Methods ARE (Mean ± SD) TPVF (Mean ±

1 RGB + Snake 6.5 ± 1.9 91.5 ± 3.7
FCM + Snake 11.8 ± 5.5 82.5 ± 9.6

2 RGB + Snake 6.6 ± 1.8 90.4 ± 2.4
FCM + Snake 11.2 ± 4.2 83.0 ± 7.9

3 RGB + Snake 5.8 ± 1.1 91.6 ± 2.0
FCM + Snake 11.1 ± 4.9 83.4 ± 8.9

4 RGB + Snake 8.3 ± 1.8 86.0 ± 3.6
FCM + Snake 15.4 ± 7.4 75.1 ± 12.9

5 RGB + Snake 5.8 ± 1.2 91.7 ± 2.1
FCM + Snake 8.8 ± 3.6 87.2 ± 6.4

Table 6
The segmentation performance (in percentage) of the hybrid method for malignant breas

Parameters of the Snake Methods ARE (Mean ± SD) TPVF (Mean ±

1 RGB + Snake 6.3 ± 1.8 91.3 ± 4.4
FCM + Snake 10.1 ± 6.4 85.1 ± 8.7

2 RGB + Snake 6.0 ± 1.0 88.6 ± 2.1
FCM + Snake 9.5 ± 6.1 82.7 ± 9.7

3 RGB + Snake 5.5 ± 1.0 90.6 ± 1.9
FCM + Snake 9.9 ± 5.8 79.1 ± 9.1

4 RGB + Snake 7.6 ± 1.8 83.9 ± 3.6
FCM + Snake 10.8 ± 6.8 72.6 ± 9.2

5 RGB + Snake 5.7 ± 1.1 87.4 ± 2.1
FCM + Snake 9.2 ± 7.0 79.4 ± 8.6
approach to reducing the speckles, the RGB was successfully ap-
plied to 20 breast US images, where benign and malignant tumors
were presented. The utilization of regional statistics would theoret-
ically decrease the influence of random noises and was validated by
the experimental results. Having carefully selected two parameters
k and a, the RGB method illustrated improved robustness to noises
and better segmentation performance in comparison with three
conventional region based methods, i.e. the K-means, the FCM
and the EGB. The quantitative experimental results of breast US
images have further demonstrated that the proposed RGB method
outperformed its counterparts. In addition, we combined the RGB
with a classical ACM method, Snake, for achieving more accurate
segmentations. The results show that the RGB can be a good initial
contour estimation method for the Snake, and the computational
efficiency of the Snake can be improved by the hybrid segmentation
scheme due to the reduced iterations.

However, the values of k and a were empirically selected in cur-
rent study, which might be inconvenient for clinicians. According
to (6), the parameter k controlled the effect of component size
for the minimum internal difference between two subregions,
images. The best values are displayed in bold-face type.

SD) FPVF (Mean ± SD) FNVF (Mean ± SD) Iteration time of Snake

2.4 ± 3.3 8.5 ± 3.7 14.3 ± 12.4
1.8 ± 1.7 17.6 ± 9.6 10.5 ± 2.9

1.9 ± 1.3 9.6 ± 2.4 11.2 ± 3.4
2.2 ± 2.4 17.1 ± 7.9 10.7 ± 3.3

2.2 ± 1.2 8.5 ± 1.9 19.5 ± 9.3
1.9 ± 1.8 16.7 ± 8.9 27.3 ± 16.8

0.8 ± 0.7 13.9 ± 3.6 23 ± 16.2
1.3 ± 1.4 24.9 ± 12.9 23.4 ± 15.1

2.3 ± 1.7 8.3 ± 2.1 10.3 ± 4.7
2.4 ± 2.0 12.8 ± 6.4 15.6 ± 12.2

t tumors. The best values are displayed in bold-face type.

SD) FPVF (Mean ± SD) FNVF (Mean ± SD) Iteration time of Snake

3.3 ± 2.5 8.6 ± 4.4 18.0 ± 16.3
8.6 ± 2.8 15.0 ± 8.7 10.5 ± 12.4

9.4 ± 1.6 8.7 ± 2.0 9.4 ± 16.8
9.0 ± 2.9 14.8 ± 9.6 10.6 ± 4.9

10.0 ± 1.8 7.9 ± 1.9 18.1 ± 15.4
9.0 ± 3.0 14.1 ± 9.1 22.9 ± 5.4

8.3 ± 1.3 11.8 ± 3.6 16.7 ± 16.6
7.2 ± 2.6 17.8 ± 9.2 18.3 ± 7.6

9.8 ± 1.6 7.5 ± 2.1 8.1 ± 19.3
9.5 ± 2.9 12.2 ± 8.5 22.3 ± 18.3
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MInt(C1,C2). Larger k tended to make the region mergence easier as
the threshold function s(C) as well as MInt(C1,C2) was increased,
weakening the evidence of the boundary between C1 and C2, and
vice versa. Therefore, a careful assignment of k should be impor-
tant to obtain a user-defined balance between the over- and
under-segmentations. Similarly, the parameter a adjusted the
influence of component size on the threshold function based on
the SNR measures. In current study, a could only be empirically
set. We have found k = 2000 and a = 0.01–0.05 for benign and
malignant tumors and illustrated their usefulness for our US data
sets in the experiments. Through experiments, it is noted that
the selections of k and a seems to be different for different image
sizes and object sizes. For US images containing breast tumors, it
would be possible to find optimal or suboptimal k and a that can
achieve satisfactory segmentation results by using a larger amount
of data.

In our future work, we will study the relationship between the
optimal parameter values and the size of the image, and apply some
intelligent machine learning methods (e.g. evolutionary computa-
tion) for automatically obtaining the optimal parameter values
based on a larger amount of breast tumor images. Moreover, fully
automatic segmentation scheme based on the RGB method will
be investigated to automatically locate the target segments, even
when over-segmentation is presented. It is expected that the RGB
based segmentation method and the hybrid scheme presented in
this paper can be used for a variety of clinical applications.
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